суббота, 17 ноября 2012 г.

Цифровой звук, немного теории. Часть 3.

4. Преимущества и недостатки цифрового звука 

С точки зрения обычного пользователя выгоды много - компактность современных носителей информации позволяет ему, например, перевести все диски и пластинки из своей коллекции в цифровое представление и сохранить на долгие годы на небольшом трехдюймовом винчестере или на десятке-другом компакт дисков; можно воспользоваться специальным программным обеспечением и хорошенько «почистить» старые записи с бобин и пластинок, удалив из их звучания шумы и треск; можно также не просто скорректировать звучание, но и приукрасить его, добавить сочности, объемности,  восстановить частоты. Помимо перечисленных манипуляций со звуком в домашних условиях, Интернет тоже приходит на помощь аудио-любителю. Например, сеть позволяет людям обмениваться музыкой, прослушивать сотни тысяч различных Интернет-радио станций, а также демонстрировать свое звуковое творчество публике, и для этого нужен всего лишь компьютер и Интернет. И, наконец, в последнее время появилась огромная масса различной портативной цифровой аудио аппаратуры, возможности даже самого среднего представителя которой зачастую позволяют с легкостью взять с собой в дорогу коллекцию музыки, равную по длительности звучания десяткам часов.

С точки зрения профессионала цифровой звук открывает поистине необъятные возможности. Если раньше звуковые и радио студии размещались на нескольких десятках квадратных метров, то теперь их может заменить хороший компьютер, который по возможностям превосходит десять таких студий вместе взятых, а по стоимости оказывается многократно дешевле одной. Это снимает многие финансовые барьеры и делает звукозапись  более доступной и профессионалу и простому любителю. Современное программное обеспечение позволяет делать со звуком все что угодно. Раньше различные эффекты звучания достигались с помощью хитроумных приспособлений, которые не всегда являли собой верх технической мысли или же были просто устройствами кустарного изготовления. Сегодня, самые сложные и просто невообразимые раньше эффекты достигаются путем нажатия пары кнопок. Конечно, вышесказанное несколько утрировано и компьютер не заменяет человека – звукооператора, режиссера или монтажера, однако с уверенностью можно сказать, что компактность, мобильность, колоссальная мощность и обеспечиваемое качество современной цифровой техники, предназначенной для обработки звука, уже сегодня почти полностью вытеснило из студий старую аналоговую аппаратуру.

Конечно, цифровая техника тоже имеет свои недостатки.  Многие (профессионалы и любители) отмечают, что аналоговый звук слушался живее. И это не просто дань прошлому. Как мы сказали выше, процесс оцифровки вносит определенную погрешность в звучание, кроме того, различная усиливающая цифровая аппаратура привносит так называемые «транзисторные шумы» и другие специфические искажения. Термину «транзисторный шум», пожалуй, нет точного определения, но можно сказать, что это хаотичные колебания в области высоких частот. Не смотря на то, что слуховой аппарат человека способен воспринимать частоты до 20 кГц, похоже, все-таки, человеческий мозг улавливает и более высокие частоты. И именно на подсознательном уровне человек все же ощущает аналоговое звучание чище, чем цифровое.

Впрочем, у цифрового представления данных есть одно неоспоримое и очень важное преимущество – при сохранном носителе данные на нем не искажаются с течением времени. Если магнитная лента со временем размагничивается и качество записи теряется, если пластинка царапается и к звучанию прибавляются щелчки и треск, то компакт-диск / винчестер / электронная память либо читается (в случае сохранности), либо нет, а эффект старения отсутствует. Важно отметить, мы не говорим здесь об Audio CD (CD-DA – стандарт, устанавливающий параметры и формат записи на аудио компакт диски) так как не смотря на то, что это носитель цифровой информации, эффект старения его, все же, не минует. Это связано с особенностями хранения и считывания аудио данных с Audio CD. Информация на всех типах компакт-дисков хранится покадрово и каждый кадр имеет заголовок, по которому его возможно идентифицировать. Однако различные типы CD имеют различную структуру и используют различные методы маркировки кадров. Поскольку компьютерные приводы CD-ROM рассчитаны на чтение в основном Data-CD (надо сказать, что существуют различные разновидности стандарта Data-CD,  каждый из которых  дополняет основной стандарт CD-DA), они часто не способны правильно «ориентироваться» на Audio CD, где способ маркировки кадров отличен от Data-CD (на аудио CD кадры не имеют специального заголовка и для определения смещения каждого кадра необходимо следить за информацией в кадре). Это означает, что если при чтении Data-CD привод легко «ориентируется» на диске и никогда не перепутает кадры, то при чтении с аудио компакт диска привод не может ориентироваться четко, что при появлении, скажем, царапины или пыли может привести к чтению неправильного кадра и, как следствие, скачку или треску звучания. Эта же проблема (неспособность большинства приводов правильно позиционироваться на CD-DA) является причиной еще одного неприятного эффекта: копирование информации с Audio CD вызывает проблемы даже при работе с полностью сохранными дисками вследствие того, что правильное «ориентирование на диске» полностью зависит от  считывающего привода и не может быть четко проконтролировано программным путем.

Повсеместное распространение и дальнейшее развитие уже упомянутых lossy-кодеров аудио (MP3, AAC и других) открыло широчайшие возможности распространения и хранения аудио. Современные каналы связи уже давно позволяют пересылать большие массивы данных за сравнительно  небольшое время, однако самой медленной остается передача данных между конечным пользователем и поставщиком услуг связи. Телефонные линии, по которым пользователи в большинстве своем связываются с Интернетом, не позволяют осуществлять быструю передачу данных. Нечего и говорить, что такие объемы данных, какие занимает несжатая аудио и видео информация, передавать по привычным каналам связи придется очень долго. Однако появление lossy-кодеров, обеспечивающих десяти-пятнадцати кратное сжатие, превратило передачу и обмен аудио данными в повседневное занятие каждого пользователя Интернета и сняло все преграды, образованные слабыми каналами связи. Касательно этого нужно сказать, что развивающаяся сегодня семимильными шагами цифровая мобильная связь во многом обязана именно lossy-кодированию. Дело в том, что протоколы передачи аудио по каналам мобильной связи работают на приблизительно тех же принципах, что и известные всем музыкальные кодеры. Поэтому дальнейшее развитие в области кодирования аудио неизменно ведет к уменьшению стоимости передачи данных в мобильных системах, от чего конечный пользователь только выигрывает: дешевеет связь, появляются новые возможности, продлевается время работы батарей мобильных устройств и т.д. Не в меньшей степени lossy-кодирование помогает экономить деньги на покупке дисков с любимыми песнями – сегодня стоит только зайти в Интернет и там можно найти почти любую интересующую песню. Безусловно, такое положение вещей давно «мозолит глаза» звукозаписывающим компаниям – у них под носом люди вместо покупки дисков обмениваются песнями прямо через Интернет, что превращает некогда золотое дно в малоприбыльный бизнес, но это уже вопрос этики и финансов. Одно можно сказать с уверенностью: с таким положением вещей уже ничего нельзя поделать и бум обмена музыкой через Интернет, порожденный именно появлением lossy-кодеров, уже ничем не остановить. А это только на руку рядовому пользователю.

5. К вопросу об обработке звука 

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1.  Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.
2.  Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.
3.  Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.
4.  Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов;  позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Обсуждение каждого из названных типов преобразований может стать целым научным трудом. Стоит привести несколько практических примеров использования указанных видов преобразований при создании реальных звуковых эффектов:
  • Echo (эхо) Реализуется с помощью временных преобразований. Фактически для получения эха необходимо на оригинальный входной сигнал наложить его задержанную во времени копию. Для того, чтобы человеческое ухо воспринимало вторую копию сигнала как повторение, а не как отзвук основного сигнала, необходимо время задержки установить равным примерно 50 мс. На основной сигнал можно наложить не одну его копию, а несколько, что позволит на выходе получить эффект многократного повторения звука (многоголосного эха). Чтобы эхо казалось затухающим, необходимо на исходный сигнал накладывать не просто задержанные копии сигнала, а приглушенные по амплитуде.
  • Reverberation (повторение, отражение). Эффект заключается в придании звучанию объемности, характерной для большого зала, где каждый звук порождает соответствующий, медленно угасающий отзвук. Практически, с помощью реверберации можно «оживить», например, фонограмму, сделанную в заглушенном помещении. От эффекта «эхо» реверберация отличается тем, что на входной сигнал накладывается задержанный во времени выходной сигнал, а не задержанная копия входного. Иными словами, блок реверберации упрощенно представляет собой петлю, где выход блока подключен к его входу, таким образом уже обработанный сигнал каждый цикл снова подается на вход смешиваясь с оригинальным сигналом.
  • Chorus (хор). В результате его применения звучание сигнала превращается как бы в звучание хора или в одновременное звучание нескольких инструментов. Схема получения такого эффекта аналогична схеме создания эффекта эха с той лишь разницей, что задержанные копии входного сигнала подвергаются слабой частотной модуляции (в среднем от 0.1 до 5 Гц) перед смешиванием со входным сигналом. Увеличение количества голосов в хоре достигается путем добавления копий сигнала с различными временами задержки.
Безусловно, как и во всех других областях, в обработке сигналов также имеются проблемы, которые являются своего рода камнем преткновения. Так, например, при разложении сигналов в спектр частот существует принцип неопределенности, который невозможно преодолеть. Принцип гласит, что нельзя получить точную спектральную картину сигнала в конкретный момент времени: либо для получения более точной спектральной картины нужно проанализировать больший временной участок сигнала, либо, если нас интересует больше время, когда происходило то или иное изменение спектра, нужно пожертвовать точностью самого спектра. Иными словами нельзя получить точный спектр сигнала в точке - точный спектр для большого участка сигнала, либо очень приблизительный спектр, но для короткого участка.

Механизмы для обработки сигналов существуют как в программном, так и в аппаратном исполнениях (так называемые эффект-процессоры). Например, вокодеры и гитарные процессоры, хорусы и ревербераторы существуют в виде аппаратуры, а также в виде программ.
Практическую обработку сигналов можно разделить на два типа: обработка «на лету» и пост-обработка. Обработка «на лету» подразумевает мгновенное преобразование сигнала (то есть с возможностью осуществлять вывод обработанного сигнала почти одновременно с его вводом). Простой пример – гитарные «примочки» или реверберация во время живого исполнения на сцене. Такая обработка происходит мгновенно, то есть, скажем, исполнитель поет в микрофон, а эффект-процессор преобразует его голос и слушатель слышит уже обработанный вариант голоса. Пост-обработка – это обработка уже записанного сигнала. Скорость такой обработки может быть сильно ниже скорости воспроизведения. Такая обработка преследует те же цели, то есть придание звуку определенного характера, либо изменение характеристик, однако применяется на стадии мастеринга или подготовки звука к тиражированию, когда не требуется спешка, а важнее качество и скрупулезная проработка всех нюансов звучания. Существует множество различных операций над звуком, которые вследствие недостаточной производительности сегодняшних процессоров нельзя реализовать «на лету», поэтому такие преобразования проводят лишь в пост-режиме.

Обработка сигнала – это сложная и, главное, ресурсоемкая процедура. Она сравнительно недавно стала проводиться в цифровых устройствах – раньше различные эффекты звучания и другие достигались путем обработки звука в аналоговых приборах. В аналоговой аппаратуре звук в виде электрических колебаний проходит через различные тракты (блоки электрических элементов), чем достигается изменение фазы, спектра и амплитуды сигнала. Однако такой способ обработки имеет массу недостатков. Во-первых, страдает качество обработки, ведь каждый аналоговый элемент имеет свою погрешность, а несколько десятков элементов могут критически повлиять на точность и качество желаемого результата. А во-вторых, и это, пожалуй, самое главное, почти каждый отдельный эффект достигается путем использования отдельного устройства, когда каждое такое устройство может стоить очень дорого.  Возможность же использования цифровых устройств имеет неоспоримые преимущества. Качество обработки сигналов в них намного меньше зависит от качества аппаратуры, главное – это качественно оцифровать звук и иметь возможность качественно его воспроизводить, и тогда качество обработки ложится уже только на программный механизм. Кроме того, для различных манипуляций со звуком не требуется постоянная смена оборудования. И, самое главное, поскольку обработка ведется программным путем, для нее открываются просто невероятные возможности, которые ограничены лишь мощностью компьютеров (а она увеличивается с каждым днем) и фантазией человека. Однако, (по крайней мере сегодня) здесь имеются и свои неприятности. Так, например, часто, даже для осуществления несложной обработки сигнала необходимо осуществить его разложение в спектр частот. В этом случае обработка сигнала на лету может быть затруднена именно из-за ресурсоемкости этапа разложения. Поэтому преобразования, требующие спектрального разложения,  выполняют чаще в пост-режиме.

Комментариев нет:

Отправить комментарий